MAPPING CYLINDER NEIGHBORHOODS(1)

BY VICTOR NICHOLSON

1. Let X be a triangulated 3-manifold and C a subcomplex of X. A regular neighborhood of C in X is the union of all simplexes in a second derived subdivision of X that intersect C. Every subcomplex C of X has a regular neighborhood. We consider the converse using a generalization of regular neighborhoods.

Let C be a closed subset of a space X. A subspace U of X is called a mapping cylinder neighborhood (MCN) of C if $U=f(M\times I)\cup C$ where f is a map of a space $M\times I$ into X such that $f|M\times [0,1)$ is a homeomorphism into X-C, $f(M\times 1)=C\cap C$ (X-C) and X=C and X=C is open in X. As noted in [12], regular neighborhoods are MCN's.

Suppose C is a closed subset of a 3-manifold X and $U=f(M \times I) \cup C$ a MCN of C. We note some properties of U.

- (a) Since $M \times (0, 1)$ is a 3-manifold, M is a generalized 2-manifold [17] and thus a 2-manifold [19]. Hence U is a 3-manifold with boundary.
 - (b) If C is compact then U is compact (Lemma 1).
- (c) If C is compact and U' is another MCN of C then Int U and Int U' are homeomorphic [12]. Thus U and U' are homeomorphic [9, Theorem 3].

Our converse: Suppose X is a 3-manifold and $C \subset X$ is a topological complex, i.e., C is homeomorphic to a locally finite simplicial complex. Suppose also that C is closed in X and C has a MCN. Then C must be a subcomplex of some triangulation of X.

THEOREM 1. If C is a topological complex which is a closed subset of a 3-manifold X, then C is tame if and only if C has a MCN.

Our motivation for Theorem 1 was the special case where C is a 1, 2 or 3-cell and M is a 2-sphere [6], [10]. An immediate corollary to Theorem 1 is

THEOREM 2. Suppose C is a tame topological complex in a 3-manifold X, g is a map of X into a 3-manifold Y such that $g^{-1}g(C) = C$, g is a homeomorphism on X - C, and g(C) is a topological complex. Then g(C) is tamely embedded in Y.

Proof. By Theorem 1, C has a MCN U. The conditions on g guarantee that g(U) is a MCN of g(C).

A special case of Theorem 1 in dimension four is also immediate. Suppose N is a space, $f: N \to N$ an onto map, and N_f the mapping cylinder defined by N and

Presented to the Society, January 24, 1969; received by the editors November 5, 1968.

⁽¹⁾ This paper is part of the author's Ph.D. thesis which was prepared under the supervision of T. M. Price at the University of Iowa.

f. Let $g: N \times I \to N_f$ be the natural map. If there exists a pseudo-isotopy $k_t(N) \to N$ such that $k_0 = \operatorname{id}$ and $k_1 = f$, then the map $h: N_f \to N \times I$ defined by $h[g(x, t)] = (k_t(x), t)$ is a homeomorphism. If G is a cellular upper semicontinuous decomposition of a 3-manifold M and M/G is a 3-manifold, then there exists a pseudo-isotopy of M onto itself that shrinks the nondegenerate elements to points [18]. Thus such a pseudo-isotopy exists when N and f(N) are 3-manifolds and f is the projection map of a cellular upper semicontinuous decomposition of N. We have

THEOREM 3. Suppose N is a compact connected 3-manifold in a 4-manifold Y. Suppose M is a 3-manifold and $U=f(M\times I)$ is a MCN of N where the restriction of f to each component of $M\times 1$ is a cellular map. Then U is a bicollar for N in Y.

Is the cellularity condition given in Theorem 3 implied by the fact that Y is a 4-manifold? This is the case in dim 3; see Lemma 3(2).

2. **Proof of Theorem 1.** We have placed the lemmas in the sections following the proof.

Proof. Suppose C has a MCN. By the procedure described at the first of the proof of Lemma 6 the union of the 1 and 2-skeleton of C has a MCN. Thus the interior of each 2-simplex is tame by Lemma 3(3). By Lemmas 5 and 6 the 1-skeleton of C is tame. In particular, the boundary of each 2-simplex in C is tame. It is a consequence of Lemmas 5.1 and 5.2 of [13] that a disk is tame if its interior and boundary are tame. Therefore the star of each vertex in C is tame, since each 2-simplex is tame and the 1-skeleton is tame [7, Theorem 3.3]. Thus C is locally tame and hence tame [3]. Suppose C is tame. Then C has a regular neighborhood under some triangulation of X. This regular neighborhood is a MCN. This completes the proof.

2.a. Suppose C is a closed subset of a 3-manifold X and $U=f(M\times I)\cup C$ is a MCN of C. We let $F=f|M\times 1$ and $i_t(t\in I)$ denote the identification of $M\times t$ with M. For example, if $x\in C\cap Cl(X-C)$ then $f(i_1F^{-1}(x)\times 0)\subseteq Bd$ U.

LEMMA 1. Suppose C is a closed subset of a 3-manifold X and $U=f(M \times I) \cup C$ is a MCN of C. (1) If A is open in $F(M \times 1)$ and contractible then every simple closed curve in $F^{-1}(A)$ separates $F^{-1}(A)$. (2) If $A \subseteq C$ is compact then $F^{-1}(A)$ is compact.

- **Proof.** Suppose not. There exist simple closed curves S_1 and S_2 in $f(i_1F^{-1}(A)\times 0)$ \subset Bd U which intersect in one point and cross there. Both curves are inessential in U because of the mapping cylinder structure over A. A simple closed curve which bounds a singular disk has a neighborhood homeomorphic to a solid torus. Thus $S_1 \cup S_2$ has an orientable neighborhood in Bd U. This is a contradiction. A 3-manifold with boundary having orientable boundary cannot contain two inessential simple closed curves in its boundary which cross at an odd number of points. See [11, p. 29] or [15, Lemma 6.1].
- (2) The local compactness of the MCN implies that F is a compact map. For let T be any compact subset of C. There exists an open set $Q \subseteq U$ such that $T \subseteq Q$

 $\subseteq \overline{Q} \subseteq \text{Int } U$ and \overline{Q} is compact. For each point $p \in F^{-1}(T)$, the arc $f(i_1(p) \times I)$ intersects $\overline{Q} - Q$. Since $F^{-1}(T)$ is closed, $J = f(i_1F^{-1}(T) \times I) \cap (\overline{Q} - Q)$ is compact. Thus $F^{-1}(T)$ is compact, since the projection of $M \times I$ onto $M \times 1$ carries $f^{-1}(J)$ onto $F^{-1}(T)$.

2.b. 2-simplexes. First some definitions. Let $x \in L$ where L is a 2-manifold with boundary in a 3-manifold X. The local separation theorem [1, §2, Corollary 2] yields: For every $\varepsilon > 0$, there exists an ε -neighborhood N of x in X such that N-L has two components O_1 and O_2 . If $x \in \operatorname{Bd} L$, then $O_2 = \emptyset$. If $x \in \operatorname{Int} L$, then O_1 and O_2 are nonempty. We say $U' \subseteq X$ is a 1-sided neighborhood of x if there exists a neighborhood N of x from the local separation theorem such that $O_1 \cup (N \cap L) \subseteq U'$ and $O_2 \cap U' = \emptyset$.

Let C be a topological complex which is closed in X and consists of 1 and 2-simplexes. Let $U=f(M\times I)$ be a MCN of C and Δ a 2-simplex of C. We say U contains a 1-sided MCN, U', of $x\in I$ if there exists a disk $D\subseteq M$ such that $U'=f(D\times I)$ is a 1-sided neighborhood of X. We shall show in Lemma 3 that 1-sided MCN's always exist. Lemma 2 is a standard type of result for 2-manifolds; we omit a proof.

LEMMA 2. Let M be a 2-manifold, B a nonempty, proper open connected subset of M such that \overline{B} is compact and every simple closed curve in B separates B. If E is a continuum in B and K is a continuum in B which separates E from Bd B, then E lies in the interior of a disk $D \subseteq B$.

Consider a fixed $x \in \text{Int } \Delta$. We distinguish two sets, H and L, in $M \times 1$ which correspond to the two sides of Δ near x. Let N, O_1 and O_2 be given for x by the local separation theorem. Let P be a disk such that $x \in \text{Int } P \subset P \subset (N \cap \text{Int } \Delta)$ and $z \in \text{Int } P$. For $y \in F^{-1}(z)$, let A_y denote the arc $f(i_1(y) \times I)$. There exists a first point p from z in $A_y \cap (\overline{N} - N)$. Then $[z, p) \subset N$ and $(z, p) \subset O_1$ or O_2 . We say A_y ends through O_1 or O_2 , respectively. Let $H_z(L_z)$ be the set of all points y such that A_y ends through $O_1(O_2)$. Let $H = \bigcup H_z$, $L = \bigcup L_z$, $z \in \text{Int } P$.

We show H and L are open and separated. We assume the neighborhood N was chosen to lie inside a neighborhood Q of x homeomorphic to E^3 . Suppose there exist $y \in H$ and $b \in L$ lying in the same component of $F^{-1}(\operatorname{Int} P)$. There exist an arc $by \subset F^{-1}(\operatorname{Int} P)$ and an arc $F(b)F(y) \subset \operatorname{Int} P$. There exists 0 < t < 1 so that the arc $f(i_1(by) \times t)$ together with F(b)F(y) and subarcs of A_y and A_b form a simple closed curve $S \subset Q$. Since A_y ends through O_1 and A_b ends through O_2 , S links Bd P (homology linking mod 2; see [4]). But since $by \subset F^{-1}(\operatorname{Int} P)$, S can be shrunk to a point in Q—Bd P by first pulling it into Int P using the mapping cylinder. Contradiction. Therefore H and L are the union of components of $F^{-1}(\operatorname{Int} P)$. Thus they are open and separated.

LEMMA 3. Suppose C is a topological complex which is a closed subset of a 3-manifold X. Suppose C consists of 1 and 2-simplexes and $U=f(M\times I)$ is a MCN of C. Also suppose Δ is a 2-simplex in C and $x\in Int \Delta$. Then (1) U contains a 1-sided MCN

of x on each side of Δ and the two disks defining the MCN's are disjoint, (2) H_x and L_x are cellular in M, and (3) Int Δ is locally tame.

- **Proof.** (1) Let x be a distinguished point in Int Δ and N, O_1 and O_2 be given for x by the local separation theorem such that N lies in a neighborhood of x homeomorphic to E^3 . Let P be a disk such that $x \in \text{Int } P \subseteq P \subseteq (N \cap \text{Int } \Delta)$ and let H and L be given as in the discussion preceding the lemma. We consider only H. By Lemma 1, $F^{-1}(x)$, and hence H_x , is compact. If H_x were not connected we could separate two of its components, say T_1 and T_2 , in $M \times 1$ with a finite number of simple closed curves $S_i \subseteq H$. But points in $f(T_1 \times I)$ and $f(T_2 \times I)$ can be joined by small arcs in O_1 . A contradiction is reached since $f(\bigcup S_i \times [0, 1])$ separates $f(M \times [0, 1))$ and x is not a limit point of $f(\bigcup S_i \times I)$. Thus F|H is monotone. There exist disks D_1 and D_2 such that $x \in \text{Int } D_1 \subseteq D_1 \subseteq \text{Int } D_2 \subseteq D_2 \subseteq \text{Int } P$. Let $E=H_x$ and $B=\bigcup H_y$, $y\in Int D_2$. Let $K=\bigcup H_y$, $y\in Bd D_1$. The map F is closed on $F^{-1}(D_2) \cap H$. The inverse image of a connected set is connected under a monotone closed map. Thus the sets E, K and B satisfy the hypothesis of Lemma 2. Let $D \subseteq M \times 1$ be a disk given by Lemma 2. Then $U' = f(i_1(D) \times I)$ is a 1-sided MCN of x. For since $D \subseteq H$, there exists t < 1 such that $f(i_1(D) \times [t, 1]) \subseteq O_1$. Picking a neighborhood N(q) of x by the local separation theorem such that $N(q) \subset N$ and $N(q) \cap f(i_1(D) \times [0, t]) = \emptyset$, we have $O_2(q) \cap f(i_1(D) \times I) = \emptyset$. Since $H_x \cap \text{Bd } D = \emptyset$ and $i_1(\text{Bd } D) \times I$ separates $M \times I$, there exists a neighborhood N(r) of x from the local separation theorem such that $O_1(r) \subset U'$. For a neighborhood N(s) of x from the local separation theorem contained in $N(q) \cap N(r)$ we have $O_1(s) \subseteq U'$ and $O_2(s) \cap U' = \emptyset$. Therefore U' is a 1-sided MCN of x. A similar argument using L yields a disk disjoint from D and a 1-sided MCN of x on the O_2 side of Δ .
- (2) Let N(s) be the neighborhood of x given above and D_3 a disk such that $x \in \text{Int } D_3 \subset D_3 \subset (N(s) \cap \text{Int } \Delta)$. Then $H \cap F^{-1}(\text{Int } D_3)$ is an open connected subset of Int D and not separated by H_x . Thus H_x , and similarly L_x , is cellular.
- (3) We shall show that $X-\operatorname{Int}\Delta$ is locally simply connected at x. Consider the 1-sided MCN of x, $U'=f(i_1(D)\times I)$ and let $\varepsilon>0$. There exists an ε -neighborhood $N(\varepsilon)$ of x from the local separation theorem such that $O_1(\varepsilon)\subset U'$ and $O_2(\varepsilon)\cap U'=\varnothing$. Since $F^{-1}(N(\varepsilon)\cap U')$ is open in $i_1(D)\times I$ and H_x is cellular, there exists a disk $G\subset i_1(D)$ and a number t<1 such that $G\times [t,1]\subset F^{-1}(N(\varepsilon)\cap U')$ and $H_x\subset\operatorname{Int}G\times 1$. Let $T=(\operatorname{Int}G)\times (t,1]$. There exists a neighborhood Q of X from the local separation theorem such that $Q\subset N(\varepsilon)$ and $Q\cap f((D\times I)-T)=\varnothing$. The component $O_1(q)$ of $Q-\operatorname{Int}\Delta$ lies in f(T). Let J be any simple closed curve in $O_1(q)$. There exists r<1 such that $f(D\times r)$ separates J from F(D) in $f(i_1(D)\times I)$. Thus J can be shrunk to a point in the interior of the 3-cell $f(G\times [t,r])\subset N(\varepsilon)$. Using the 1-sided MCN of X on the other side of $\operatorname{Int}\Delta$, we have that $X-\operatorname{Int}\Delta$ is locally simply connected at X. Since $X-\operatorname{Int}\Delta$ is locally simply connected at each $X\in\operatorname{Int}\Delta$, X is locally tame [5].

2.c. 1-complexes. Let n be a positive integer. An n-frame T is the union of n-arcs $A_i = [p, a_i]$ such that $A_i \cap A_j = p$. The points a_i are the endpoints of T. The interior of T, Int T, is T minus its endpoints. We define a MCN of the interior of T. No confusion should result from this different use of MCN. Let S^2 denote the 2-sphere and D_i , $i = 1, \ldots, n$, be disjoint disks in S^2 . Let $M = S^2 - \bigcup D_i$ and consider $M \times I$ as a subspace of $S^2 \times I$. If T is an n-frame in a 3-manifold X then Int T is said to have a MCN, $U = f(M \times I)$, if there exists a map f of $M \times I$ into X such that $(1) f | M \times [0, 1)$ is a homeomorphism into X - T, $(2) f(M \times 1) = Int T$, (3) U is a neighborhood of Int T in X, and (4) for any sequence $\{b_j\}$ in $M \times I$ which converges to a point of Bd $D_i \times 1$, $\{f(b_j)\}$ converges to the endpoint a_i of T.

LEMMA 4. Suppose T is an n-frame in a 3-manifold X. If there exists a MCN, $f(M \times I)$, of Int T then Int T is locally tame.

Proof. The proof of Lemma 4 follows the procedure used to prove Theorem 1 in [6]. We partition a neighborhood of Int T and a neighborhood of the interior of a standard n-frame in E^3 into homeomorphic pieces. We then obtain a homeomorphism between the neighborhoods which carries T onto the standard n-frame. Since for each $t \in (0, 1)$, $f(M \times t)$ is bicollared, we may assume that $f(M \times 0)$ is locally tame. Let C be a circle, $A = C \times (0, 1) \times I$ and $(x, y, z) \in A$ such that $x \in C$, $y \in (0, 1)$ and $z \in I$. Let B denote the half-open annulus in A, $B = \{(x, y, z) : y = 1/2z + 1/2\}$.

The properties given in Lemma 1 also hold for a MCN of Int T. It therefore follows that F is closed and monotone. Thus the inverse image under F of any connected subset of Int T is connected. For each i, $F^{-1}(Int A_i)$ is a component of $(M \times 1) - F^{-1}(p)$ and $F^{-1}(\text{Int } A_i) \cup D_i$ is a component of $(S^2 \times 1) - F^{-1}(p)$. Since each component of S^2 minus the continuum $F^{-1}(p)$ is homeomorphic to E^2 , subtracting the disk D_i yields that $F^{-1}(\text{Int } A_i)$ is an open annulus. Thus there exist homeomorphisms k_1 and k_2 of A into $i_1F^{-1}(\operatorname{Int} A_i) \times I$ such that $B(a_i) = \operatorname{Cl}(fk_1(B))$ is a disk with $B(a_i) \cap T = a_i$, $B(p_i) = \operatorname{Cl}(fk_2(B))$ is a disk with $B(p_i) \cap T = p$, Int $B(a_i) - a_i$ and Int $B(p_i) - p$ are locally tame, and $B(p_i) \cap B(a_i) = \emptyset$. Similarly, for each $x \in \text{Int } A_i$, $F^{-1}(\text{Int } A_i) - F^{-1}(x)$ is the union of two disjoint open annuli. By mapping A homeomorphically into one of these annuli we can define a disk B(x) such that $B(x) \cap T = x$ and B(x) - x is locally tame. For distinct x and y in A_i there exist numbers $t_1 < t_2 < 1$ such that if $W = \operatorname{Cl}(f(M \times [t_1, 1]) - f(M \times [t_2, 1]))$ and if P is the closure of the component of $f(M \times I) - (B(x) \cup B(y))$ that intersects Int A_i then $W \cap P$ is a tame solid torus. Let O be the closure of the component of $f(M \times I) - \bigcup B(a_i)$ that contains Int T. Let L_i be the closure of the component of $O - \bigcup B(p_i)$ that contains Int A_i and $L = Cl(O - \bigcup L_i)$. Let O' be the unit ball in E^3 and T' an *n*-frame whose vertex is the origin, whose endpoints lie in Bd O'and which is composed of straight line segments. Partition O' into regions L' and L'_i corresponding to L and L_i . It follows from the proof of Theorem 1 of [6] that we may partition $L_i - A_i$ and $L'_i - A'_i$ into tame solid tori as above whose diameters

go to zero as the tori approach T in such a way that a homeomorphism $R_i\colon L_i\to L_i'$ can be obtained by defining homeomorphisms on corresponding tori. Let $J_1=f(M\times[0,1/2])\cap L$, $J_j=f(M\times[1/j,1/j+1])\cap L$, $j\ge 2$. Each J_j $(j\ge 1)$ has tame boundary and is homeomorphic to $M\times I$. There exists a collection of regions $\{J_j'\}$ in L' and a sequence of onto homeomorphisms S_j $(j\ge 1)$ such that $S_j\colon J_j\to J_j'$ and S_j extends R_i $(i=1,\ldots,n)$ and S_k (k< j). The union of the S_j and the R_i can be extended to a homeomorphism of O onto O' that carries T onto T'. Thus Int T is locally tame.

LEMMA 5. Suppose C is a topological 1-complex which is a closed subset of a 3-manifold X. Suppose C has a MCN, $f(M \times I)$. Then C is tame.

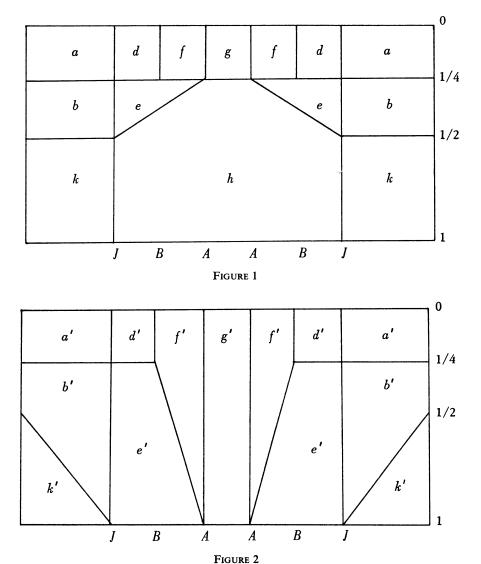
Proof. Let p be a vertex of C and T the n-frame consisting of all simplexes in C containing p. We shall show that $f(i_1F^{-1}(\operatorname{Int} T)\times I)$ is a MCN of Int T. It follows from Lemma 1 that F is closed and monotone. Let $[p, a_i]$ be a 1-simplex in T. Let $x, y \in (p, a_i)$ and $q \in (x, y)$. Let $K_z = f(i_1 F^{-1}(z) \times 0)$, z = x, y and q. There exist simple closed curves S and S' which separate K_q from K_x and K_q from K_y in $f(i_1F^{-1}[x, y] \times 0)$, respectively. The curves S and S' can be shrunk to points on disjoint subsets of $f(M \times (0, 1]) \cup S \cup S'$. They therefore bound disjoint disks there by Dehn's Lemma [16]. Let K be the union of the two disks and the component of $f(i_1F^{-1}[x, y] \times 0) - (S \cup S')$ that contains K_q . Since a simple closed curve in K can be pushed off of the two disks, we can obtain from Lemma 1 that every simple closed curve in K separates K. Thus K is a 2-sphere [2]. It follows that $F^{-1}(p, a_i)$ is an open annulus. Thus for each i, there exists a disk B_i in $f(i_1F^{-1}(p,a_i)\times I)\cup a_i$ constructed as in the proof of Lemma 4 such that $B_i\cap T=a_i$. The component of $f(M \times 0) - \bigcup Bd B_i$ which contains $f(i_1F^{-1}(p) \times 0)$ is a sphere with *n*-holes since its union with the disks B_i is a 2-sphere (again by Lemma 1 and [2]). By the construction of the B_i , $F^{-1}(\operatorname{Int} T)$ is a sphere with *n*-holes. It follows that $f(i_1F^{-1}(\operatorname{Int})T\times I)$ is a MCN of Int T. By Lemma 4, C is locally tame and hence tame [3].

LEMMA 6. Suppose C is a topological complex which is a closed subset of a 3-manifold X. If C has a MCN then the 1-skeleton of C has a MCN.

Proof. Let M' be a 2-manifold and f' a map of $M' \times I$ into X such that $f'(M' \times I) \cup C$ is a MCN of C. Let $\{K_i\}$ be the collection of all 3-simplexes in C. Let N_i be a layer in the collar for Bd K_i in K_i . Let $M = M' \cup \{N_i\}$ and $f: M \times I \to X$ be such that $f|M' \times I = f', f|N_i \times I$ is a homeomorphism onto the region between N_i and Bd K_i , and $f(N_i \times 0) = N_i$. Then $f(M \times I) \cup C$ is a MCN of C_0 , the union of the 1- and 2-skeleton of C. Having removed the 3-simplexes we proceed to eliminate the 2-simplexes. Let Δ be a 2-simplex in C_0 . We shall show there exists a 2-manifold M_1 and a map H_1 of $M_1 \times I$ into X such that $H_1(M_1 \times I)$ is a MCN of C_0 —Int Δ and $H_1(M_1 \times I)$ agrees with $f(M \times I)$ outside of $f(i_1F^{-1}(\operatorname{Int}\Delta) \times I)$. Defining such a map for each 2-simplex in C_0 will yield a MCN of the 1-skeleton of C. Let

 $p \in \text{Int } \Delta$. By Lemma 3 there exist disjoint disks D_i (i=1,2) in M such that $F(D_i \times 1) \subset \text{Int } \Delta$ and $U_i = f(D_i \times I)$ are 1-sided MCN's of p on opposite sides of Δ . Let Δ_1 and Δ_2 be disks lying in the intersection of the interiors of $F(D_1 \times 1)$ and $F(D_2 \times 1)$ such that $p \in \text{Int } \Delta_1 \subset \Delta_1 \subset \text{Int } \Delta_2$.

The MCN of C_0 —Int Δ_2 . Intuitively, we bore a hole through the MCN. Let $A = F^{-1}(\operatorname{Bd} \Delta_1) \cap (D_1 \times 1)$ and $J = F^{-1}(\operatorname{Bd} \Delta_2) \cap (D_1 \times 1)$. The region between A and J is an open annulus. Let B be a simple closed curve lying in this region and concentric to A and J. There exists a map k of $D_1 \times I$ onto itself that carries each region in Figure 1 onto the corresponding region (labeled with a prime) in Figure 2, k is fixed on the boundary of $D_1 \times I$ and the region labeled h is collapsed into



 $D_1 \times 1$. The map k may be extended to map $D_2 \times I$ onto itself in the same manner as k maps $D_1 \times I$ onto itself. The spaces $fk(\text{Int } D_i \times t)$, t=1/2, 1/4; i=1, 2, are each homeomorphic to E^2 because they are homeomorphic to spaces of cellular upper semicontinuous decompositions of E^2 , by Lemma 3(2) and [14]. Let E_1 denote the annulus

$$f\{([\text{Bd } D_1, i_1(B)] \times 0) \cup (i_1(B) \times [0, 1/4]) \cup k([i_1(B), i_1(A)] \times 1/4)\} \cup \text{Bd } \Delta_1$$

and T_1 the torus

$$f\{((Bd\ D_1)\times[0,\ 1/2])\cup k([Bd\ D_1,\ i_1(J)]\times 1/2)\}\cup [Bd\ \Delta_1,\ Bd\ \Delta_2]\cup E_1.$$

It follows from Lemmas 5.1 and 5.2 of [13] that T_1 is tame. Let E_2 and T_2 be the corresponding annulus and torus in U_2 . Let M_1 be $f(M \times 0)$ minus $f(\text{Int } D_1 \times 0) \cup f(\text{Int } D_2 \times 0)$ plus $E_1 \cup E_2$. A homeomorphism β may be defined to map $(E_1 \cup E_2) \times I$ onto the tori T_1 and T_2 plus their interiors such that the extension of β on $M_1 \times I$ agrees with f and yields a MCN of C_0 —Int Δ_2 .

The MCN of C_0 —Int Δ . We show there exists a map P of X onto itself which collapses the annulus $[\operatorname{Bd} \Delta_2, \operatorname{Bd} \Delta]$ onto $\operatorname{Bd} \Delta$, P is a homeomorphism on X— $[\operatorname{Bd} \Delta_2, \operatorname{Bd} \Delta)$, and P moves no point of $X-f(F^{-1}(\operatorname{Int} \Delta) \times I)$. Letting $H_1 = P\beta$ will give us that $H_1(M_1 \times I)$ is a MCN of C_0 —Int Δ . The following spaces are described in cylindrical coordinates in E^3 . Let S be the simple closed curve (r=1/4, z=0). Let L be the solid annulus $(1/4 \le r \le 1, -1 \le z \le 1)$. Let P' be the map of L onto itself defined by

$$P'(r, \theta, z) = (r + r(1 - |z|), \theta, z), \qquad 0 \le r \le 1/2,$$

= $(r + (1 - r)(1 - |z|), \theta, z), \qquad 1/2 \le r \le 1.$

The map P' is a homeomorphism on Bd L and collapses the annulus $(1/2 \le r \le 1, z=0)$ into the simple closed curve (r=1,z=0). Let S_1 be a simple closed curve lying in the annulus $[\operatorname{Bd} \Delta_1,\operatorname{Bd} \Delta_2]$ concentric to Bd Δ_1 . There exists a homeomorphism α of the annulus $(1/4 \le r \le 1,z=0)$ onto the annulus $[S_1,\operatorname{Bd} \Delta]$ in Δ such that $\alpha(1/4,\theta,0) \in S_1$, $\alpha(1/2,\theta,0) \in \operatorname{Bd} \Delta_2$ and $\alpha(1,\theta,0) \in \operatorname{Bd} \Delta$, for every θ . Since Int Δ is locally tame there exists a homeomorphism g of L into K such that K extends K and K and K and K is extended and K and K is expected and K and the identity elsewhere. This completes the proof.

3. 1-sided MCN's. Let L be a 2-manifold with boundary in a 3-manifold X. Let $x \in L$, U a 1-sided neighborhood of x and N, O_1 and O_2 given for U. We say X-L is locally simply connected on the U side of L at x if for every $\varepsilon > 0$, there exists a neighborhood $N(\varepsilon)$ of x from the local separation theorem such that $N(\varepsilon) \subset N$ and any simple closed curve in $O_1(\varepsilon)$ can be shrunk to a point in X-L on a set of diameter less than ε . If $x \in \text{Int } L(x \in \text{Bd } L)$ then L is said to be locally tame from the U side at x if x has a neighborhood in U homeomorphic to a 3-cell

(C is locally tame at x). It follows from Theorems 4 and 8 of [5] that L is locally tame from the U side at x if L is locally simply connected on the U side at each point in a neighborhood of x. Let D be a disk. A point $x \in L$ is said to have a 1-sided MCN, $U=f(D \times I)$, if there exists a map $f: D \times I \to X$ such that $f(D \times 1) \subset L$, $f(D \times I)$ is a homeomorphism into X-L, and U is a 1-sided neighborhood of x.

THEOREM 4. Suppose L is a 2-manifold with boundary in a 3-manifold X. If $x \in L$ and x has a 1-sided MCN then L is locally tame from the U side at x.

Proof. The proof of Lemma 3(3) essentially shows that X-L is locally simply connected on the U side at x for $x \in \text{Int } L$. The case for $x \in \text{Bd } L$ is a consequence of Theorem 1. Consider a small neighborhood of x in L as the topological complex and let X be a properly chosen subset of the 1-sided MCN.

We give a short proof of a result which is part of the folklore of upper semicontinuous decompositions.

THEOREM 5. Suppose L is a 3-manifold with boundary and G an upper semicontinuous decomposition of L all of whose nondegenerate elements lie in Bd L and are cellular in Bd L. Then L/G is a 3-manifold with boundary.

Proof. If G is an upper semicontinuous decomposition of E_+^3 all of whose non-degenerate elements lie in E^2 and are cellular in E^2 , then E^2/G has a neighborhood in E_+^3/G homeomorphic to E_+^3 . For consider $E_+^3 \subset E_-^3$; then E^2/G is homeomorphic to E^2 by [14] and E^3/G is homeomorphic to E^3 by [8]. Let P denote the projection map of E^3 onto E^3/G . For each $x \in E^2/G$, there exists a disk D such that $P^{-1}(x) \subset Int$ D. Let $U = \{(x, y, z) : (x, y, 0) \in D, 0 \le z \le 1\}$. Then P(U) is a 1-sided MCN of x in E_+^3/G . By Theorem 4, x has a 3-cell neighborhood in P(U). Hence E_+^3/G contains a neighborhood of E^2/G homeomorphic to E_+^3 .

Let h be the projection map of L onto L/G and $x \in \operatorname{Bd} L/G$. There exists a neighborhood Q of $h^{-1}(x)$ in $\operatorname{Bd} L$ which is homeomorphic to E^2 and is the union of elements of G. There exists a neighborhood B of Q in L homeomorphic to E^3_+ . By the above, h(B) contains a neighborhood of x in L/G homeomorphic to E^3_+ . Thus L/G is a 3-manifold with boundary.

REFERENCES

- 1. P. Alexandroff, On local properties of closed sets, Ann. of Math. 36 (1935), 1-35.
- 2. R. H. Bing, The Klein sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946), 644-653.
 - 3. ——, Locally tame sets are tame, Ann. of Math. 59 (1954), 154-158.
 - 4. ——, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), 456-483.
- 5. ——, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305.
- 6. R. H. Bing and A. Kirkor, An arc is tame in 3-space if and only if it is strongly cellular, Fund. Math. 55 (1964), 175-180.
 - 7. P. H. Doyle, On the embedding of complexes in 3-space, Illinois J. Math. 8 (1964), 615-620.

- 8. E. Dyer and M. E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103-108.
- 9. C. H. Edwards, Jr., Concentricity in 3-manifolds, Trans. Amer. Math. Soc. 113 (1964), 406-423.
 - 10. H. C. Griffith and L. R. Howell, Jr., Strongly cellular cells in E3 are tame (unpublished).
- 11. H. Kneser, Eine bermerkung uber dreidimensionalen mannigfaltigkeiten, Nachr. Ges. Wiss. Gottingen (1925), 128-130.
- 12. K. W. Kwun and F. Raymond, Mapping cylinder neighborhoods, Michigan Math. J. 10 (1963), 353-357.
- 13. Edwin E. Moise, Affine structures in 3-manifolds. VIII. Invariance of knot types; Local tame embedding, Ann. of Math. 59 (1954), 159-170.
- 14. R. L. Moore, Concerning upper semicontinuous collections of continua which do not separate a given set, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 356-360.
 - 15. C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281-299.
 - 16. ——, Dehn's lemma and asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- 17. F. Raymond, Separation and union theorems for generalized manifolds with boundary, Michigan Math. J. 7 (1960), 7-21.
- 18. W. Voxman, On the shrinkability of decompositions of 3-manifolds, Thesis, The University of Iowa, 1968.
- 19. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ., Vol. 32, Amer. Math. Soc., Providence, R. I., 1963.

THE UNIVERSITY OF IOWA,
IOWA CITY, IOWA
KENT STATE UNIVERSITY,
KENT, OHIO